the case of cis-[(PhCH₂)₂Co(bpy)₂]⁺, however, PhCH₂CoTPP is obtained exclusively (Table I). Such selective formation of PhCH₂CoTPP may be ascribed to the slow reductive elimination of two benzyl ligands as compared with the other alkyl ligands of $cis [R_2Co(bpy)_2]^{2+}$ (R = Me and Et), as reported previously.⁹

A quantitative evaluation of the contribution of such electron-transfer processes in the reductive alkylation of CoTPP⁺ by alkylcobalt(III) complexes may be achieved by comparing the observed rate constants with those predicted by the Marcus theory for the rates of outer-sphere electron-transfer reactions.¹⁸ The second-order rate constants for the reduction of Co(TPP)ClO₄ by alkylmetals in MeCN at 298 K were determined by monitoring the disappearance and rise of the absorption bands at 434 and 407 nm due to the decay of CoTPP⁺ and the formation of RCoTPP, respectively.^{19,20} The reported values of self-exchange rate constants of alkylcobalt(IV/III) complexes9 and a cobalt-(III/II) porphyrin²¹ together with the electron-transfer equilibrium constants, obtained from the one-electron oxidation potentials of the alkylcobalt(III) complexes⁹ and the one-electron reduction potential of CoTPP⁺ in MeCN,²¹ constitute a satisfactory basis for accounting for the k_{obs} values in light of the Marcus relation.¹⁸ The calculated electron-transfer rate constants k_{calc} and the observed second-order rate constants are listed in Table II. The k_{calc} values are about the same order of magnitude as the corresponding k_{obs} values, although most k_{obs} values are somewhat smaller than the k_{calc} values.²² Such agreement indicates that the rate-determining step for the reductive alkylation of CoTPP+ by alkylcobalt(III) complexes mainly consists of the electrontransfer process, as shown in Scheme I.²²

The k_{calc} values of R₄Sn are also evaluated by the same manner as the case of alkylcobalt(III) complexes, using the reported values of self-exchange rate constants and the one-electron-oxidation potentials of R₄Sn,¹³ and are listed in Table I, together with the k_{obs} values for the reduction of CoTPP⁺ by R₄Sn. In contrast with the case of alkylcobalt(III) complexes, the k_{calc} values of R_4Sn are 10^2-10^{13} times smaller than the k_{obs} values, as shown in Table II. A close scrutiny of the data reveals that the deviation from the calculated values of outer-sphere electron transfer is the most pronounced with the least hindered tetraalkyltin, i.e., Me₄Sn. The magnitude of the deviation decreases with increasing the size of the alkyl group (Table II). Such a trend must reflect steric effects that perturb the inner-sphere coordination of R₄Sn to CoTPP+ in the transition state for the reductive alkylation, which is clearly distinguished from the outer-sphere electron-transfer processes

- (17) The bis complex $[Co(bpy)_2]^{2+}$ shown in Scheme I may be converted to the tris complex [Co(bpy)₃]³⁺, which was identified by ¹H NMR spectroscopy, since thermodynamic considerations indicate that the tris complex is more stable than the bis complex: Fukuzumi, S.; Ishikawa, K.; Tanaka, T. Organometallics 1987, 6, 358.
- (18) The Marcus relation for the rate constant of the electron transfer from the reductant (1) to the oxidant (2), k_{12} , is given by $k_{12} = (k_{11}k_{22}k_{12})^{1/2}$, where k_{11} and k_{22} are the rate constants of the corresponding self-exchanges and K_{12} is the equilibrium constant for the electron-transfer changes and κ_{12} is the equilibrium constant for the electron-transfer reaction. The K_{12} value is obtained from the oxidation potential of the reductant, E°_{ox} , and the reduction potential of the oxidant, E°_{red} by using the following equation: $\log K_{12} = (-2.3RT/F)^{-1}(E^{\circ}_{\text{ox}} - E^{\circ}_{\text{red}})$. The parameter f is given by $\log f = (\log K_{12})^2/[4 \log (k_{11}k_{22}/Z^2)]$, where Z, the frequency factor, is taken to be 1×10^{11} M⁻¹ s⁻¹: Marcus, R. A. Annu. Rev. Phys. Chem. 1964, 15, 155.
- (19) Kinetic measurements were carried out by using a Union RA-103 stopped-flow spectrophotometer and a Union SM-401 spectrophotometer under the pseudo-first-order conditions where the concentrations of alkylmetals were maintained at >10-fold excess of the CoTPP⁺ concentration with half-lives shorter than 10 s and much longer than 10 s, respectively. The second-order rate constants were determined with Co(TPP)ClO₄ in MeCN instead of Co(TPP)Cl in CHCl₃/MeCN (5:1 v_{ν} , since the thermodynamic parameters required for calculation of the electron-transfer rate constants have been obtained in MeCN.^{9,13,21}
- (20) The absorption maximum of RCoTPP ($\lambda_{max} = 407 \text{ nm}$)^{7b} is different from λ_{max} of CoTPP (412 nm).¹⁹ Fukuzumi, S.; Mochizuki, S.; Tanaka, T. *Inorg. Chem.* **1989**, 28, 2459.
- (22)The rate of cleavage of the cobalt-carbon bond following the electron transfer may also be involved partially in the rate-determining step, when the k_{obs} values of the overall reactions become smaller than the k_{calc} values of the electron-transfer processes. In the case of *trans*-[Me₂Co(DpnH)], the k_{obs} value is somewhat larger than the k_{calc} value, indicating contribution of an inner-sphere process.^{13,21,23}

(23) For comparison between outer-sphere and inner-sphere electron-transfer processes, see: Reference 13, Klingler, R. J.; Kochi, J. K. J. Am. Chem. Soc. 1981, 103, 5839. Kochi, J. K. Angew. Chem. 1988, 100, 1331. Haim, A. Prog. Inorg. Chem. 1983, 30, 273. Seaman, G. C.; Haim, A. J. Am. Chem. Soc. 1984, 106, 1319.

Shunichi Fukuzumi* Department of Applied Chemistry Toshiaki Kitano Faculty of Engineering Osaka University Suita, Osaka 565, Japan

Received February 28, 1990

Facile α/β Diastereomerism in (2,2,2-Trifluoroethyl)cobalt Corrins

In a recent publication,¹ unequivocal evidence was presented that reductive alkylation of cobinamides (Cbi's) with ¹³CH₃I leads essentially exclusively to formation of the β -alkylcobinamide (i.e., CH₃ in the "upper" axial position). We now wish to report a startlingly different result upon reductive alkylation of cobinamide with CF₃CH₂I.

When Factor B^{2,3} was reduced with zinc/acetic acid and alkylated with CF₃CH₂I,⁴ the monocationic alkylcobinamide fraction from cation-exchange chromatography showed two bands by HPLC⁵ (mobility relative to CNCbl, $R_{CN} = 1.23$ and 1.48), both of which were readily converted to diaquocobinamide ((H₂O)₂Cbi, $R_{\rm CN} = 0.77$) upon aerobic photolysis. The two compounds were readily separated by semipreparative HPLC. The more slowly migrating compound had a UV-visible spectrum (Figure 1A, dashed line) essentially identical, above 300 nm, with that of the base-off species of the previously characterized⁶ CF₃CH₂Cbl (Figure 1B, dashed line). Moreover, its ¹⁹F NMR spectrum consisted of a triplet at 57.38 ppm (Table I), J = 13.9 Hz, again essentially identical with that of the base-off CF₃CH₂Cbl (Table I). We conclude that this compound is the β -diastereomer of CF_3CH_2Cbi , i.e. α - (H_2O) - β - $(CF_3CH_2)Cbi$ (hereafter β - CF_3CH_2Cbi). The other compound ($R_{CN} = 1.23$) had a UVvisible spectrum (Figure 1A, solid line) quite similar to that of β -CF₃CH₂Cbi, except that its longest wavelength band (i.e. the α -band) is red-shifted 27 nm (Table I). Its spectrum was cleanly converted to that of $(H_2O)_2Cbi^7$ upon aerobic photolysis and to that of (CN)₂Cbi⁸ upon aerobic photolysis in excess cyanide. Its ¹⁹F NMR resonance (δ = 59.52 ppm, J = 14.7 Hz) was distinctly downfield from those of base-off CF₃CH₂Cbl and base-on CF_3CH_2Cbl (Table I). Both compounds were also characterized by FAB-MS (glycerol matrix). The positive-ion mass spectra were virtually identical, with a parent ion mass 1072.8 for β -CF₃CH₂Cbi and 1072.9 for the other compound (calculated for $M^+ - H_2O^9$

- (1) Brown, K. L.; Peck-Siler, S. Inorg. Chem. 1988, 27, 3548-3555.
- Factor B is a mixture of the diastereomeric cyanoaquocobinamides (2) α -(CN)- β -(H₂O)Cbi and α -(H₂O)- β -(CN)Cbi.
- Renz, P. Methods Enzymol. 1971, 18, 82–92. Typical preparative-scale conditions: 100 mg of Factor B (0.09 mmol) (4)in 25 mL of 10% acetic acid was purged with argon for 1 h. Zinc wool, 2.0 g (briefly freshed by swirling in 1.0 N HCl), was introduced and reduction allowed to proceed for 30 min under argon. A 1.0-mL aliquot of CF_3CH_2I (10 mmol) was injected, and after 2 min the reaction mixture was desalted by either passage through an Amberlite XAD-2 column or extraction through phenol. Purification of the alkylcobinamides was effected by ion-exchange chromatography on SP-Sephadex, Na⁺ form, the RCbi's eluting in 0.1 M sodium acetate, pH 5.0
- (5) Jacobsen, D. W.; Green, R.; Brown, K. L. Methods Enzymol. 1986, 123, 14 - 22
- (6) Brown, K. L.; Hakimi, J. M.; Nuss, D. M.; Montejano, Y. D.; Jacobsen, D. W. Inorg. Chem. 1984, 23, 1463-1471
- Baldwin, D. A.; Betterton, E. A.; Pratt, J. M. J. Chem. Soc., Dalton (7)
- Trans. 1983, 217-233. Barker, H. A.; Smyth, R. D.; Weissbach, H.; Toohey, J. I.; Ladd, J. N.; Volcani, B. E. J. Biol. Chem. 1960, 235, 480-488.

 Table I. HPLC Mobilities and Spectroscopic Properties of (2,2,2-Trifluoroethyl)cobalt Corrins

compd ^a	R _{CN} [¢]	δıs _F , ^c ppm	J _{HF} , Hz	λ _{mex} , ^d nm
β-CF ₃ CH ₂ Cbi	1.48	57.38	13.9	455
α-CF ₃ CH ₂ Cbi	1.23	59.52	14.7	482
β-CF ₃ CH ₂ Cbl	1.41			
base-on"		58.97	14.4	530
base-off [/]		57.40	13.5	454
α-CF ₃ CH ₂ Cbl	1.35	59.53	14.5	482

^a β signifies the upper axial ligand; α , the lower. ^b HPLC mobility relative to that of CNCbl.⁵ ^cNicolet NT200 superconducting NMR spectrometer operating at 188.239 MHz. Chemical shifts are relative to external fluorobenzene; positive shifts, downfield. ^dMaximum of the longest wavelength (or α) band in the visible spectrum. ^eIn water. ^fIn 0.5 M HCl (pH 0.30) or 0.21 M H₂SO₄ (pH 0.50) pK_{base-off} 2.60.⁶

1073.2). Both products were further characterized by GC-MS analysis of the gaseous products formed from their organic ligands upon anaerobic photolysis and pyrolysis.¹¹ Pyrolysis of both compounds produced only 1,1-difluoroethylene (ca. 95%) and 1,1,1-trifluoroethane, while photolysis produced the same two products with the alkane predominating (ca. 75%). We conclude that the slower migrating organocobinamide product from reductive alkylation of Factor B with CF₃CH₂I is the α -diastereomer α -(CF₃CH₂)- β -(H₂O)Cbi (hereafter α -CF₃CH₂Cbi).

This surprising result prompted us to reexamine the products formed upon reductive alkylation of H₂OCbl with CF₃CH₂I, previously reported to yield the expected β -isomer of CF₃CH₂Cbl.⁶ Upon cation-exchange chromatography of a desalted reaction mixture, a red band eluting with water was closely followed by a yellow band. The mobility of the yellow band could be significantly retarded by lowering the pH of the desalted reaction mixture to 5.0. The yellow material had a UV-visible spectrum (Figure 1C) which was identical, above 300 nm, with that of α -CF₃CH₂Cbi. It was readily converted to H₂OCbl by aerobic photolysis (UV-vis and HPLC, $R_{CN} = 0.82$) and to (CN)₂Cbl by aerobic photolysis in the presence of excess cyanide (by UVvis).⁸ Its UV-visible spectrum (Figure 1C) was pH-independent above 300 nm, unlike that of the red CF₃CH₂Cbl (Figure 1B), but showed spectral changes in the UV region consistent with the protonation of a pendent, but uncoordinated, dimethylbenzimidazole nucleotide.⁶ The pK_a for this acid dissociation reaction was 5.54 by potentiometric titration (ionic strength 1.0 M, 25.0 °C). The ¹⁹F NMR resonance of the yellow material was virtually identical with that of the α -diastereomer of CF₃CH₂Cbi (Table I). Also, its FAB mass spectrum (parent ion mass 1412.8, calculated for $MH^+ - H_2O^{12}$ 1413.4) was identical with that of the red CF₃CH₂Cbl (parent ion mass 1413.4). The yellow material was also further characterized by GC-MS analysis of the organic products of its anaerobic pyrolysis and photolysis.¹¹ Again, CF₂CH₂ was the predominant product (ca. 84%) of anaerobic pyrolysis while photolysis produced a 60:40 mixture of CF₃CH₃ and CF₂CH₂. Similar results were obtained with the red CF₃CH₂Cbl. We conclude that this yellow organocobalt corrin

Figure 1. (A) Electronic spectra of the (2,2,2-trifluoroethyl)cobinamides, 1.25 × 10⁻⁵ M, in water: (solid line) α -CF₃CH₂Cbi; (dashed line) β -CF₃CH₂Cbi. (B) Electronic spectra of β -(2,2,2-trifluoroethyl)cobalamin, 1.25 × 10⁻⁵ M: (solid line) base-on β -CF₃CH₂Cbl, pH 6.8 in 0.1 M potassium phosphate buffer; (dashed line) base-off β -CF₃CH₂Cbl, pH 0.50 in 0.3 M HCl. (C) Electric spectra of α -(2,2,2-trifluoroethyl)cobalamin, 1.25 × 10⁻⁵ M: (solid line) pH 6.8 in 0.1 M potassium phosphate buffer; (dashed line) pH 0.5 in 0.3 M HCl.

is the α -isomer of CF₃CH₂Cbl (hereafter α -CF₃CH₂Cbl), in which coordination of the pendent dimethylbenzimidazole nucleotide is blocked by the α -organic ligand. In two independent preparations, the total yield of CF₃CH₂Cbl's was 40%, of which 17% was α -CF₃CH₂Cbl and 83% was β -CF₃CH₂Cbl.

Careful analytical HPLC determinations of CF₃CH₂Cbi product ratios from both preparative-scale and analytical-scale¹³ reaction mixtures show that the RCbi product fraction from reductive alkylation of Factor B with CF₃CH₂I is $87.4 \pm 3.7\%$ α -CF₃CH₂Cbi (average of 35 determinations). This is in stark contrast to reductive alkylation of Factor B with CH₃I, which gives

⁽⁹⁾ As reported by Hay and Finke¹⁰ for 5'-deoxyadenosylcobinamide, the parent cation is a 5-coordinate RCbi (i.e. M⁺ - H₂O).

⁽¹⁰⁾ Hay, B. P.; Finke, R. G. J. Am. Chem. Soc. 1987, 109, 8012-8018.
(11) Finnigan MAT TSQ70 tandem mass spectrometer equipped with a 30 m × 0.539 mm GS-Q megabore column, temperature programmed from 40 to 200 °C at 16 °C/min. Samples (ca. 1 mg) for anaerobic photolysis (in 0.5 mL of 5% isopropanol) and pyrolysis (dry solid) were prepared in 1.0-mL Reactivials (Pierce) closed with Teflon Mininert valves (Pierce) as described previously.⁶ Photolysis was effected by illumination with a 275-W incandescent lamp for 3 h at a distance of 5.0 cm, and pyrolysis, by heating the vials for 60 s in a 220 °C oil bath. CF₂CH₂: retention time 1.8 min; mass spectrum m/e (relative abundance, ion) 64 (100%, M⁺), 63 (15%, M⁺ - H), 45 (59%, M⁺ - F), 44 (48%, M⁺ - HF), 33 (23%, M⁺ - CF), 31 (35%, M⁺ - CH₂). CH₂. CH₃. Retention time 2.6 min. Mass spectrum (m/e, relative abundance, ion) 84 (1.5%, M⁺), 69 (100%, M⁺ - CH₃), 65 (30%, M⁺ - F), 64 (9.0%, M⁺ - HF), 45 (9.0%, M⁺ - HF₂).
(12) For the zwitterionic RCb1's, the positive-ion parent mass contains a proton from the matrix. As was the case with AdoCbi¹⁰ and the

⁽¹²⁾ For the zwitterionic RCbl's, the positive-ion parent mass contains a proton from the matrix. As was the case with AdoCbi¹⁰ and the CF₃CH₂Cbi's, the parent ion of the α-isomer of CF₃CH₂Cbl is missing the (presumed) axial H₂O ligand.

⁽¹³⁾ Factor B varied from 2.0 × 10⁻⁵ to 3.3 × 10⁻³ M, and CF₃CH₂I varied from 2.0 × 10⁻³ to 0.39 M, representing an excess of alkylating agent ranging from 11.2-fold to 19 511-fold.

at least 95% of the β -diastereomer.¹ The latter observation prompted speculation that in the case of CH₃Cbi the products were under kinetic control, with alkylation of the β -face being sterically favored due to congestion at the α -face from the b, d, and e propionamide side chains and the f secondary amide side chain. We have consequently attempted to determine if for the CF₃CH₂Cbi's the products are under equilibrium control, with initial alkylation occurring at the β -face followed by equilibration of the diastereomers via a pathway that is not available (or more likely of too high energy) in the case of CH₃Cbi. Time-resolved determination of the product ratios for the CF₃CH₂Cbi's under a variety of conditions¹³ showed that the final product ratio (i.e. 6.9:1, $\alpha:\beta$) is established within 10-20 s of introduction of alkylating agent and remains unchanged throughout the reaction period (up to 30-60 min). Interestingly, both diastereomers of CF₃CH₂Cbi proved to be quite unstable with respect to reductive dealkylation by zinc/acetic acid ($T_{1/2} \sim 1$ min) so that net alkylation in this system represents a steady-state situation. Consequently, at long reaction times (30-60 min) the total yield of alkylcobinamides is reduced, presumably due to depletion of alkylating agent. At 0 °C, the net alkylation yield rose from about 25% to 46% over the first 4 min and then gradually declined to less than 20% at 1 h, while the ratio of diastereomers remained constant throughout. These observations are consistent with kinetic control of products, with the rate of α -face attack exceeding that of β -face attack by about 7-fold, but this conclusion is difficult to accept in light of the contrary results with CH₃Cbi. The results are also consistent with the CF₃CH₂Cbi products being under equilibrium control, provided that the rate of equilibration of the diastereomeric CF₃CH₂Cbi's is quite fast, even exceeding the rate of initial alkylation at 0 °C. The exact mechanism of formation of the diastereomeric CF₃CH₂Cbi's and the extreme difference in behavior of the CF₃CH₂Cbi's and CH₃Cbi are currently under intense investigation.14

Acknowledgment. This research was supported by Grant CHE-89-00927 from the National Science Foundation and Grant Y-749 from the Robert A. Welch Foundation, Houston, TX.

- Kraütler, B.; Caderas, C. Helv. Chim. Acta 1984, 67, 1891-1896. Current address: Department of Chemistry, Box CH, Mississippi State
- (16)University, Mississippi State, MS 39762.

Department of Chemistry	Kenneth L. Brown*,16
Box 19065	Daniel R. Evans
The University of Texas at Arlington	
Arlington, Texas 76019	

Received March 9, 1990

Sulfur L-Edge XANES Study of Zinc-, Cadmium-, and Mercury-Containing Metallothionein and Model Compounds

We report the first sulfur L-edge (150-250 eV), X-ray absorption near-edge structure (XANES) spectra for the metallothionein (MT) species Zn₇-MT, Cd₇-MT, Hg₇-MT, and Hg₁₈-MT 2. These data are compared with sulfur L-edge spectra obtained for PbS (galena) and ZnS (sphalerite) and the model compounds $[Zn_4(SPh)_{10}](Me_4N)_2$ and $[Cd_4(SPh)_{10}](Me_4N)_2$. The detail in these XANES spectra illustrates the considerable utility of a technique that can provide geometric data for a range of different metal complexes from the same thiolate groups within the metal

Figure 1. Sulfur L-edge XANES spectra of model compounds: (A) PbS; (B) ZnS; (C) $[Zn_4(SPh)_{10}](Me_4N)_2$; (D) $[Cd_4(SPh)_{10}](Me_4N)_2$.

binding site. Analysis of the data for Zn₇-MT 1, Cd₇-MT 1, and Hg₇-MT 1 shows that Hg₇-MT 1 adopts a similar structure in terms of the sulfur environment, with the same thiolate oxidation state and nearest-neighbor distances as those for the well-known Cd and Zn metallothioneins. The substantially different spectrum for the recently described Hg₁₈-MT 2 species shows that it adopts a significantly different structure in terms of the thiolate environment. Although the XANES spectra of $[Zn_4(SPh)_{10}](Me_4N)_2$ and $[Cd_4(SPh)_{10}](Me_4N)_2$ compounds, which can be considered to be analogues of the α -domain in MT, are similar to each other, these spectra do not closely resemble the data obtained for the protein samples.

Metallothioneins are low molecular weight, cysteine-rich proteins containing 20 SH groups per molecule. These proteins bind to a wide range of metal ions both in vivo and in vitro.¹ Extensive studies have been carried out in order to understand the nature of metal binding in metallothionein using ¹¹³Cd NMR, ¹H NMR, X-ray crystallography, circular dichroism (CD), magnetic circular dichroism (MCD), and Raman spectroscopic techniques.^{1,2}

Hasnain et al. have reviewed the available extended X-ray absorption fine structure spectroscopy (EXAFS) data for different metal environments of MT.^{1,3,4} Elder et al.^{5a} and Laib et al.^{5b} have published results from XANES studies, in which the Au L₃ energy region (11-12 keV) was used to determine the oxidation state of Au in Au₂₀-MT. Klemens et al. have recently reported the EXAFS and XANES spectra of the Hg L3-edge of mercury-substituted copper proteins.⁶ Stephan and Hitchcock⁷ have reported metal K-edge EXAFS of two model compounds of the metallothionein α -domain. To our knowledge, no sulfur L-edge XANES studies of metallothionein or any other sulfur-containing

- Kagi, J. H. R.; Kojima, Y., Eds. Metallothionein II (Experientia Suppl. (1)
- Kagi, J. H. R., Kojima, T., Eds. Metanomorem II Experiental Suppr. 52) Birkhauser: Basel, Switzerland, 1987.
 For example, ¹¹³Cd NMR: (a) Otvos, J. D.; Armitage, I. M. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 7094-7098. ¹H NMR: (b) Neuhause, D.; Wagner, G.; Vasak, M.; Kagi, J. H. R.; Wuthrich, K. Eur. J. Biochem. 1985, 151, 257-273. X-ray crystallography: (c) Furey, W. F.; Robbins, A. H.; Clancy, L. L.; Winge, D. R.; Wang, B. C.; Stout, C. D. Science 1986, 231, 704-710. Circular dichorism: (d) Stillman M. 1: Cai W. 1986, 231, 704-710. Circular dichroism: (d) Stillman, M. J.; Cai, W.; Zelazowski, A. J. J. Biol. Chem. 1987, 262, 4538-4548. EXAFS: (e) George, G. N.; Byrd, J.; Winge, D. R. J. Biol. Chem. 1988, 263, 8199-8203.
- (3) Hasnain, S. S., Top. Curr. Chem. 1988, 147, 82-93.
 (4) Hasnain, S. S.; Garner, C. D. Prog. Biophys. Mol. Biol. 1987, 50, 47-65
- (a) Elder, R. C.; Eidsness, M. K.; Heeg, M. J.; Tepperman, K. G.;
 Shaw, C. F., III; Schaeffer, N. S. ACS Symp. Ser. 1983, No. 209, 385-400.
 (b) Laib, J. E.; Shaw, C. F., III; Petering, D. H.; Eidsness, M. K.; Elder, R. C.; Garvey, J. S. Biochemistry 1985, 24, 1977-1986. (5)
- Klemens, S.; McMillin, D. R.; Tsang, H. T.; Penner-Hahn, J. E. J. Am. Chem. Soc. 1989, 111, 6398-6402. (7) Stephan, D. W.; Hitchcock, A. P. Inorg. Chim. Acta 1987, 136, L1-L5.

⁽¹⁴⁾ Krautler and Caderas¹⁵ have reported that treatment of heptamethyl cob(1)yrinate in toluene/tetrahydrofuran with methyl tosylate leads exclusively to the heptamethyl β -methylcobyrinate (75% yield) while treatment with CH₃I yields the heptamethyl α -methylcobyrinate (71% yield) along with 7% of the β -isomer. The reasons for the different outcomes when cobinamide in water and cobester in an organic medium are reductively alkylated with CH₃I are not at all clear. As yet, we have been unable to obtain any products by reductive alkylation of cobinamides with trifluoroethyl tosylate.